

BetaGreen Model BG 5.0
Unidirectional Condenser Microphone

The BG 5.0 microphone represents the latest in microphone technology, utilizing an advanced condenser transducer design. The BG 5.0 delivers the high performance and rugged construction that you need for demanding applications such as live music, sound reinforcement and home studio recording.

The BG 5.0 is the ideal choice for laying down vocal tracks in the home studio environment. Its electret condenser design provides high sensitivity and low noise for producing quality demo tapes, while its specially shaped frequency response helps vocals to sound vibrant and clear.

Features:
- Highly sensitive and reliable electret condenser design for high quality vocal recording
- Cardioid pickup pattern reduces feedback and pickup of unwanted noise
- Wide frequency response, specially shaped for crisp, clear voice reproduction
- Internal shock mount for reduced pickup of handling noise and stand vibration
- On/Off switch for convenient control of audio signal by performer
- Operates on internal AA battery for one year of continuous use, or on phantom power from mixer
- Sturdy open-mesh type grille with built-in wind and pop filter
- Padded Nylon carrying case and unbreakable swivel adapter included

Basic Microphone Technique

Good microphone technique will add to your effectiveness as a performer. Keep the following points in mind when using your Shure BetaGreen Microphone.

1. The distance from the performer or instrument to the microphone has a significant effect on the sound. For increased bass response, get close to the microphone (within 6 inches or less). The closer the microphone is to the sound source, the more the bass response will be increased.

Copyright 1995, Shure Brothers Inc.
27A2656 (OA)

Printed in U.S.A.
2. Beneficial changes in the level and character of sound coming from the loudspeakers can be achieved by changing your distance from the microphone. For instance, working up close can provide maximum bass enhancement without feedback. Practice and experience will develop your skill in varying your distance to achieve the desired effects.

3. For maximum isolation from other sound sources and background noise, position the microphone as close to the source as practical, and aimed at the source.

Feedback and Directional Microphones

A performer’s worst enemy in using a microphone is feedback. This is a harsh howl or squeal that occurs when the microphone picks up sound from the loudspeakers, reamplifies and reproduces it over and over again (see Figure 2). This vicious circle results in feedback.

Other hints in preventing feedback are: keep the loudspeakers as far to the sides as possible, be sure that the microphones point toward the performers and away from the loudspeakers; and make certain that any stage monitor speakers are positioned in front of the performers and face the insensitive rear of the microphone.

![Feedback Loop](image)

FEEDBACK LOOP
FIGURE 2

A directional microphone with a cardioid pickup pattern aids in preventing feedback because it rejects sound that originates from the sides and rear (see Figure 3). Sound pickup from the sides is reduced by about one half, and pickup from the rear is reduced by about nine tenths. You can hear this reduction in pickup by speaking into the microphone as you rotate it from front to back.

If you use your directional microphone close to the performer or instrument, you will ensure that the direct sound will be much louder than the feedback-producing amplified sound. Because the amplifier gain can be turned up less to achieve the desired overall loudness, the amplified sound will likely remain below the volume that triggers feedback.

![Cardioid Microphone](image)

CARDIOID MICROPHONE MINIMIZES POSSIBILITY OF FEEDBACK
FIGURE 3

Directional Microphone and Proximity Effect

Because of their usefulness in reducing the likelihood of feedback, directional microphones are best in sound reinforcement and public address.

When directional microphones are used close to a vocalist or musical instrument, there is an increase in bass (low-frequency) output called proximity effect. Typical increases due to proximity are shown in Figure 5.

Proximity effect can be used to improve your sound.

1. **With vocalists**, it increases bass response, giving a fuller, more powerful quality to the voice. Proximity effect can be especially effective during soft passages where extra emphasis is needed.

2. **With instruments**, it allows the user to change bass output without tone controls, simply by changing the distance between source and microphone. In addition, close miking improves acoustical isolation by minimizing pickup of other instruments.

The cardioid directional characteristics of your microphone are provided by means of rear sound entry points that cancel sounds originating from the sides and back of the microphone. It is therefore important that these ports not be covered at any time. When holding the microphone,
do not allow your hand to partially cover the grille (see Figure 4).

DO NOT COVER THE GRILLET WITH YOUR HAND

FIGURE 4

Most Shure directional microphones are designed to provide satisfactory response at low frequencies yet still allow proximity effect to be used advantageously when desired. To learn how to use proximity effect, you need to hear the amplified result. Use monitor speakers or headphones, and just as you practice your instrument, practice your microphone technique to get the precise sound you want.

OPTIONAL WINDSCREEN

If you notice excessive popping of p's and b's when the microphone is used closeup, a helpful accessory is the Shure A85WS windscreen in addition to the filter built-in to the ball grille. The windscreen will also minimize pickup of wind noise when the microphone is used outdoors.

SHOCK MOUNTING

Your Shure BetaGreen microphone features a carefully engineered shock mount to minimize transmission of mechanical noise. To reduce noise pickup when the microphone is handheld, take care to avoid unnecessarily handling it. To further reduce mechanical noise when the microphone is used on a stand, use a shock-mounted stand adapter such as the Shure A55HM. Also, be sure to locate the stand on a solid, flat surface.

OPERATION

The BG 5.0 is designed for powering by virtually any available microphone phantom power supply providing 11 to 52 Vdc (such as a Shure PS1A Power Supply or many mixing consoles or power mixers). As an alternative, the BG 5.0 can also be powered by a single 1.5 volt AA battery (alkaline is recommended). The battery also serves as backup in case of phantom power failure.

A new alkaline battery will provide up to 10,000 hours of continuous microphone operation. Note that the microphone is powered at all times during battery operation (the on/off switch affects only the audio signal) but there is no battery drain during phantom-powered operation.

Battery Installation

Disconnect the microphone cable and unscrew the microphone handle, turning it counterclockwise. Slide the handle away from the grille, exposing the battery compartment. Insert the battery, observing the polarity marking in the compartment.

Slide the handle back toward the grille and tighten the handle by turning it clockwise.

SPECIFICATIONS

Type
Cardioid condenser (electret bias)

Frequency Response
70 to 16,000 Hz (see Figure 5)

TYPICAL FREQUENCY RESPONSE

FIGURE 5

Polar Pattern
Cardioid (directional), symmetrical about axis (see Figure 6)

TYPICAL POLAR PATTERNS

FIGURE 6

Output Impedance
600 Ω rated

Recommended Load Impedance
For connection to microphone inputs rated 800 Ω minimum

Output Level (at 1.000 Hz)
Open Circuit Voltage −69.0 dB (0.355 mV)
0 dB = 1 V/μbar
Maximum SPL
2,000 Ω load ... 132 dB (phantom), 128 dB (battery)
800 Ω load ... 130 dB (phantom), 127 dB (battery)

Output Noise
21 dB typical, A weighted
25 dB typical, weighted per DIN 45 405

Dynamic Range (maximum SPL, 2 kΩ load, to A-weighted noise level)
111 dB (phantom); 107 dB (battery)
Reverse polarity protected to: > 100 Vdc

Phasing
Positive pressure on diaphragm produces positive voltage on pin 2 relative to pin 3 of microphone output connector

Power
Phantom
Supply Voltage 11 to 52 Vdc
Current Drain 2.0 mA max at 52 Vdc
Reverse polarity protected to 100 Vdc

Battery
Type 1.5 V alkaline AA size
(NEDA 15A)
Life up to 10,000 hours

Environmental Conditions
This microphone will operate over a temperature range of –29 to 57°C (–20 to 135°F), and at relative humidity of 0 to 95%.

Connector
3-pin professional audio (XLR) designed to mate with Cannon XL series, Switchcraft A3 (O.G.) series, or equivalent connector

Case
Steel and aluminum construction with black finish

Dimensions
See Figure 7

Net Weight
257 g (9 oz) less battery

FURNISHED ACCESSORIES
Swivel Adapter A25C
Carrying/Storage Bag (less foam insert) 26A16

OPTIONAL ACCESSORIES
Phantom Power Supply PS1A
Shock Stopper™ Isolation Mount A53M
Windscreen A85WS
Cable (7.6 m [25ft]) C25J

REPLACEMENT PARTS
Screen and Grille Assembly 90HP2600
Cartridge Assembly 90HS2600
Plug Element 90A1984