Table of Contents

P300 IntelliMix® Audio Conferencing Processor
4

Safety Information
4
 IMPORTANT SAFETY INSTRUCTIONS
4

Overview
5
 General Description
5
 Features
5

Getting Started
5
 Step 1: Connect to a Network and Discover in Designer
6
 Step 2: Route Audio and Apply DSP
6
 Step 3: Adjust DSP and Route Signals
6
 Get More Information
7

Differences Between 3.x and 4.x Firmware
7

Use Cases
8
 Overview of Shure Conferencing Devices
8
 P300 and Computer with Soft Codec
10
 Connecting a USB Device
10
 Hardware Codec System
11
 Mobile Phone System
12
 Mobile Connection Cable Requirements
12

Controlling Devices with Shure Designer Software
13

How to Update Firmware Using Designer (Version 4.2 and Newer)
14
 Firmware Versioning
14

P300 Hardware
14
 Power Over Ethernet Plus (PoE+)
17
 Cable Requirements
17
 Reset
17

Installation
18

Schematic View
21
 Adjusting Settings
21
 Customizing the Workspace
22
 Metering and Audio Routing
22

Mute and Fader Groups
22

Custom Presets
22

Parametric Equalizer (PEQ)
23
 2-Band Equalizers
23
 4-Band Equalizers
23
 Equalizer Applications
25

Using Designer’s Optimize Workflow
26

Automatic Gain Control (AGC)
27
 Acoustic Echo Cancellation
27
 Noise Reduction
28
 Compressor
28
 Delay
29

Matrix Mixer
29
 Crosspoint Gain
29
 Routing Channels
29
 P300 Default Settings
29

Mute Synchronization
31
 Setting Up Mute Sync on the MXA310 and P300
31

Adjusting Input levels
31
 Digital Sources (Dante and USB)
32
 Analog Sources
32
 Mobile Devices
32

Adjusting Output Levels
32

Installation and Rack Mounting
18

Cable Requirements
17

Reset
17
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre- and Post-Gain Metering</td>
<td>32</td>
</tr>
<tr>
<td>Input Metering</td>
<td>32</td>
</tr>
<tr>
<td>Output Metering</td>
<td>33</td>
</tr>
<tr>
<td>Automix Modes</td>
<td>33</td>
</tr>
<tr>
<td>Gating</td>
<td>33</td>
</tr>
<tr>
<td>Gain Sharing</td>
<td>33</td>
</tr>
<tr>
<td>Manual</td>
<td>33</td>
</tr>
<tr>
<td>Automix Settings</td>
<td>33</td>
</tr>
<tr>
<td>Automixer Direct Out Tap Points</td>
<td>34</td>
</tr>
<tr>
<td>Encryption</td>
<td>35</td>
</tr>
<tr>
<td>Networking and Dante</td>
<td>35</td>
</tr>
<tr>
<td>Networking Best Practices</td>
<td>35</td>
</tr>
<tr>
<td>Network Audio and Shure Control Data</td>
<td>35</td>
</tr>
<tr>
<td>Device IP Settings</td>
<td>36</td>
</tr>
<tr>
<td>Configuring IP Settings</td>
<td>36</td>
</tr>
<tr>
<td>Manually Assigning Static IP Address</td>
<td>36</td>
</tr>
<tr>
<td>Operating the Control Software over Wi-Fi</td>
<td>36</td>
</tr>
<tr>
<td>Digital Audio Networking</td>
<td>37</td>
</tr>
<tr>
<td>Switch Recommendations for Dante Networking</td>
<td>37</td>
</tr>
<tr>
<td>Setting Latency</td>
<td>37</td>
</tr>
<tr>
<td>Pushing Device Names to the Dante Network</td>
<td>37</td>
</tr>
<tr>
<td>AES67</td>
<td>37</td>
</tr>
<tr>
<td>Compatibility with Dante Domain Manager</td>
<td>38</td>
</tr>
<tr>
<td>Dante Flows for Shure Devices</td>
<td>38</td>
</tr>
<tr>
<td>Packet Bridge</td>
<td>39</td>
</tr>
<tr>
<td>QoS (Quality of Service) Settings</td>
<td>39</td>
</tr>
<tr>
<td>IP Ports and Protocols</td>
<td>40</td>
</tr>
<tr>
<td>Using a Third-Party Control System</td>
<td>41</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>42</td>
</tr>
<tr>
<td>Event Log</td>
<td>42</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>42</td>
</tr>
<tr>
<td>Important Product Information</td>
<td>43</td>
</tr>
<tr>
<td>Information to the user</td>
<td>44</td>
</tr>
<tr>
<td>Specifications</td>
<td>44</td>
</tr>
<tr>
<td>Mobile Pin Assignments (TRRS)</td>
<td>47</td>
</tr>
<tr>
<td>Accessories</td>
<td>48</td>
</tr>
<tr>
<td>Furnished Accessories</td>
<td>48</td>
</tr>
<tr>
<td>Optional Accessories and Replacement Parts</td>
<td>48</td>
</tr>
</tbody>
</table>
P300
IntelliMix® Audio Conferencing Processor

Safety Information

IMPORTANT SAFETY INSTRUCTIONS

1. READ these instructions.
2. KEEP these instructions.
3. HEED all warnings.
4. FOLLOW all instructions.
5. DO NOT use this apparatus near water.
6. CLEAN ONLY with dry cloth.
7. DO NOT block any ventilation openings. Allow sufficient distances for adequate ventilation and install in accordance with the manufacturer’s instructions.
8. DO NOT install near any heat sources such as open flames, radiators, heat registers, stoves, or other apparatus (including amplifiers) that produce heat. Do not place any open flame sources on the product.
9. DO NOT defeat the safety purpose of the polarized or grounding type plug. A polarized plug has two blades with one wider than the other. A grounding type plug has two blades and a third grounding prong. The wider blade or the third prong are provided for your safety. If the provided plug does not fit into your outlet, consult an electrician for replacement of the obsolete outlet.
10. PROTECT the power cord from being walked on or pinched, particularly at plugs, convenience receptacles, and the point where they exit from the apparatus.
11. ONLY USE attachments/accessories specified by the manufacturer.
12. USE only with a cart, stand, tripod, bracket, or table specified by the manufacturer, or sold with the apparatus. When a cart is used, use caution when moving the cart/apparatus combination to avoid injury from tip-over.
13. UNPLUG this apparatus during lightning storms or when unused for long periods of time.
14. REFER all servicing to qualified service personnel. Servicing is required when the apparatus has been damaged in any way, such as power supply cord or plug is damaged, liquid has been spilled or objects have fallen into the apparatus, the apparatus has been exposed to rain or moisture, does not operate normally, or has been dropped.
15. DO NOT expose the apparatus to dripping and splashing. DO NOT put objects filled with liquids, such as vases, on the apparatus.
16. The MAINS plug or an appliance coupler shall remain readily operable.
17. The airborne noise of the Apparatus does not exceed 70dB (A).
18. Apparatus with CLASS I construction shall be connected to a MAINS socket outlet with a protective earthing connection.
19. To reduce the risk of fire or electric shock, do not expose this apparatus to rain or moisture.
20. Do not attempt to modify this product. Doing so could result in personal injury and/or product failure.
21. Operate this product within its specified operating temperature range.
Overview

General Description

The P300 IntelliMix Audio Conferencing Processor offers IntelliMix DSP algorithms optimized for audio/video conferencing applications, featuring 8 channels of acoustic echo cancellation, noise reduction and automatic gain control to ensure a high-quality audio experience.

The P300 provides Dante (10 in/8 out), analog (2 block in/2 block out), USB (1 in/out) and mobile (3.5 mm) connectivity options that makes connecting to room systems and collaborating with laptops and mobile devices easier than ever.

Features

- Connects 10 Dante™ audio inputs, 2 analog inputs, USB, and a mobile device to an A/V conferencing system or a PC-based videoconferencing application
- Includes IntelliMix DSP algorithms to enhance audio quality in A/V conferences: 8 channels of AEC (acoustic echo cancellation), noise reduction, and automatic gain control, combined with automatic mixing, matrix mixing, delay, compressor and parametric equalization
- Flexible signal routing and connectivity: analog audio (2 block in/2 block out) to connect to room A/V conferencing system; USB (1 in/out) to connect to laptop or room PC; one 3.5 mm TRRS jack to connect to a mobile device to enable an additional participant to join
- Power over Ethernet Plus (PoE+) eliminates the need for an outboard power supply
- Compact form factor is easy to mount without equipment rack

Getting Started

To control the P300, use Shure Designer software to adjust settings and route audio between Shure devices. After completing this basic setup process, you should be able to:

- Control the P300 in Designer
- Apply digital signal processing (DSP)
- Route audio to and from devices

Before you get started, you'll need:

- Cat5e (or better) Ethernet cable
- Network switch that provides Power over Ethernet Plus (PoE+)
Step 1: Connect to a Network and Discover in Designer

1. Connect the P300 to a PoE+ port on the network switch using Cat5e (or better) cable.
2. Connect your computer running Designer to the network switch.
3. Open Designer, and check that you’re connected to the correct network in Settings.
4. Click Online devices. A list of online devices appears.
5. To identify devices, click the product icon to flash the lights on a device.

Step 2: Route Audio and Apply DSP

The easiest way to route audio and apply DSP is with Designer's Optimize workflow. Optimize automatically routes audio signals, applies DSP settings, turns on mute synchronization, and enables LED logic control for connected devices.

For this example, we'll connect an MXA910 ceiling array microphone. The process is the same for any networked Shure microphone in Designer.

1. From My projects, select New to create a new project. Click New to add a location to your project.
2. Select Live mode. Any online devices appear in the list. Drag and drop the P300 and MXA910 to add them to your location.
3. Select Optimize.
4. Check the audio routes and settings to make sure they fit your needs. You might need to:
 - Delete unnecessary routes.
 - Fine-tune DSP blocks as needed.
 - Test and adjust microphone coverage.

You can also route audio manually in Designer outside of the Optimize workflow, or use Dante Controller.

Step 3: Adjust DSP and Route Signals

The final steps vary depending on what other devices you connect to the P300. Regardless of what devices you connect, the final steps are to check DSP settings and route signals in the matrix mixer.

1. Connect any other analog, USB, or mobile audio devices to the P300.
2. Check the signal routes in the Matrix mixer tab. Designer establishes many common routes automatically.
3. Adjust levels as needed in the Inputs and Outputs tabs.
4. Listen to your signal and adjust DSP settings as needed. Optimize applies DSP automatically, so you may not need to make any adjustments.
5. Check and adjust the acoustic echo cancellation (AEC) reference source in Schematic > AEC. Optimize sets one automatically, but you may need to adjust it depending on your setup.

Use the channel that carries audio to loudspeakers as the AEC reference. If your room has an analog loudspeaker system or built-in display speakers, Analog -- To Speaker is the most common source. If you’re using Dante loudspeakers, one of Dante outputs is the reference.

Get More Information
Learn more about the P300 in the Designer Help section or in the complete user guide at pubs.shure.com/guide/P300.

Differences Between 3.x and 4.x Firmware

6 Dante Outputs Added

• With 4.x firmware, the P300 has 10 Dante inputs and 8 Dante outputs for increased flexibility

Automixer Direct Out Tap Points Added

• Choose where the microphone signals going to the matrix mixer come from: pre- or post-processing, and pre- or post-automixer gating
• These options add flexibility for reinforcement, voice lift, speaker zoning, and other applications.

Support for Dante Domain Manager

• You can now add the P300 to domains in Dante Domain Manager software.

Audio Encryption Improvements

• Firmware 4.x and newer has improved audio encryption, so make sure to update all Shure devices using encryption to the same major firmware version.
Web Applications Removed

- With firmware 4.x and newer, Shure Designer software is the only way to control the P300.
- You can access basic settings for the device by opening it from the Shure Web Device Discovery tool, but you must use Designer for full control.
- Download Designer at shure.com/designer.

Use Cases

Overview of Shure Conferencing Devices

Shure offers a range of connectivity options for conferencing. MXA microphones, audio processors, and network interfaces all use Dante to send audio over standard IT networks. You can use Shure’s free Designer software to control most Shure devices and route audio between them.

<table>
<thead>
<tr>
<th>Device</th>
<th>Purpose</th>
<th>Physical Connections</th>
<th>Dante I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>MXA910</td>
<td>Ceiling array microphone with IntelliMix DSP</td>
<td>1 PoE port</td>
<td>8 individual channel outputs or 1 automix channel output with IntelliMix DSP 1 AEC reference input</td>
</tr>
<tr>
<td>MXA710</td>
<td>Linear array microphone with IntelliMix DSP</td>
<td>1 PoE port</td>
<td>2 Foot: 4 individual channel outputs or 1 automix channel output with IntelliMix DSP 1 AEC reference input 4 Foot: 8 individual channel outputs or 1 automix channel output with IntelliMix DSP 1 AEC reference input</td>
</tr>
<tr>
<td>MXA310</td>
<td>Table array microphone</td>
<td>1 PoE port</td>
<td>4 individual channel outputs or 1 automix channel output</td>
</tr>
<tr>
<td>P300</td>
<td>Audio processor with IntelliMix DSP and matrix mixer</td>
<td>1 USB in/out 2 analog block in 2 analog block out 1 mobile TRRS port (3.5 mm) 1 PoE+ port</td>
<td>8 Dante inputs with IntelliMix DSP 2 auxiliary Dante inputs 8 Dante outputs</td>
</tr>
<tr>
<td></td>
<td>Audio processing software with IntelliMix DSP and matrix mixer</td>
<td>Varies depending on device</td>
<td>8 or 16 Dante inputs with IntelliMix DSP</td>
</tr>
<tr>
<td>Device</td>
<td>Purpose</td>
<td>Physical Connections</td>
<td>Dante I/Os</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>---------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>IntelliMix Room</td>
<td></td>
<td></td>
<td>8 auxiliary Dante inputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 Dante outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 virtual audio input and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 PC input and output</td>
</tr>
<tr>
<td>ANIUSB-MATRIX</td>
<td>Matrix mixer with USB and analog</td>
<td>1 USB in/out</td>
<td>4 Dante inputs</td>
</tr>
<tr>
<td></td>
<td>input/output</td>
<td>1 analog block in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 analog block out</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 PoE port</td>
<td></td>
</tr>
<tr>
<td>**ANI4IN (block or XLR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>connectors)**</td>
<td>Converts analog signals to Dante</td>
<td>4 analog in</td>
<td>4 Dante inputs</td>
</tr>
<tr>
<td></td>
<td>signals</td>
<td>1 PoE port</td>
<td></td>
</tr>
<tr>
<td>**ANI4OUT (block or XLR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>connectors)**</td>
<td>Converts Dante signals to analog</td>
<td>4 analog out</td>
<td>4 Dante outputs</td>
</tr>
<tr>
<td></td>
<td>signals</td>
<td>1 PoE port</td>
<td></td>
</tr>
<tr>
<td>**ANI22 (block or XLR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>connectors)**</td>
<td>Converts 2 analog signals to Dante</td>
<td>2 analog in</td>
<td>2 Dante inputs</td>
</tr>
<tr>
<td></td>
<td>signals</td>
<td>2 analog out</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Converts 2 Dante signals to analog</td>
<td>1 PoE port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MXN5-C</td>
<td>Networked ceiling loudspeaker</td>
<td>1 PoE port</td>
<td>2 Dante inputs</td>
</tr>
<tr>
<td></td>
<td>powered by PoE</td>
<td></td>
<td>1 Dante output</td>
</tr>
<tr>
<td>**MXA Network Mute</td>
<td>PoE-powered network mute button</td>
<td>1 PoE port</td>
<td>n/a</td>
</tr>
<tr>
<td>Button**</td>
<td>for Shure devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 power cable connector for base</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P300 and Computer with Soft Codec

1. Connect the computer to the USB port on the P300.
2. Connect a powered loudspeaker or amplifier to the P300 analog output 2. In the matrix mixer, this is labeled Analog - To Speaker. You can also use Dante PoE loudspeakers connected to the network switch.
3. In Designer, go to Matrix mixer to make connections between devices. Some connections are established automatically.

Required Matrix Mixer Connections:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automix</td>
<td>USB output</td>
</tr>
<tr>
<td>USB input</td>
<td>Analog - To Speaker or Dante output</td>
</tr>
</tbody>
</table>

4. In Schematic, right-click any AEC block and choose an AEC reference source. The reference source is Analog - To Speaker for analog loudspeakers, or one of the Dante outputs for Dante loudspeakers.
5. Adjust input and output levels using Designer and perform a sound check. Refer to the Help section for additional information.

Connecting a USB Device

The USB port connects the host computer to the entire room audio system, including microphones and loudspeakers.

When the P300 is connected for the first time, the computer recognizes it as a USB audio device. You may need to select it as the input/output (recording/playback) device to pass audio. Assign the P300 as the default device to ensure it passes audio every time it is plugged in. Refer to the manual for your computer to configure the audio settings.
Adapter Compatibility

This device is compatible with USB-B to USB-C adapters. Using an adapter is only recommended for desktop and laptop computers, as many mobile devices do not support bi-directional audio through USB or lightning ports.

Hardware Codec System

1. Connect the hardware codec audio output to the P300 analog input 1. In the matrix mixer, this is labeled Analog - From Codec.
2. Connect the hardware codec audio input to the P300 analog output 1. In the matrix mixer, this is labeled Analog - To Codec.
3. Connect a powered loudspeaker or amplifier to the P300 analog output 2. In the matrix mixer, this is labeled Analog - To Speaker. You can also use Dante PoE loudspeakers connected to the network switch.
4. In Designer, go to Matrix mixer to make connections between devices. Some connections are established automatically.

Required Matrix Mixer Connections:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automix</td>
<td>Analog - To codec</td>
</tr>
<tr>
<td>Analog - From Codec</td>
<td>Analog - To Speaker or Dante output</td>
</tr>
</tbody>
</table>

5. In Schematic, right-click any AEC block and choose an AEC reference source. The reference source is Analog - To Speaker for analog loudspeakers, or one of the Dante outputs for Dante loudspeakers.
6. Adjust input and output levels using Designer and perform a sound check. Refer to the Help section for additional information.
Mobile Phone System

In this example, when the phone is plugged in, the built-in microphone and speaker are disabled -- the phone simply carries the call. The MXA310 microphone captures near-end audio, and the loudspeaker delivers audio from the far end of the call.

1. Connect the phone to the P300 with a 1/8-inch **TRRS** cable.
2. Connect a powered loudspeaker or amplifier to the P300 analog output 2. In the matrix mixer, this is labeled Analog - To Speaker. You can also use Dante PoE loudspeakers connected to the network switch.
3. In Designer, go to Matrix mixer to make connections between devices. Some connections are established automatically.

Required Matrix Mixer Connections:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automix</td>
<td>Mobile output</td>
</tr>
<tr>
<td>Mobile input</td>
<td>Analog - To Speaker or Dante output</td>
</tr>
</tbody>
</table>

4. In Schematic, right-click any AEC block and choose an AEC reference source. The reference source is Analog - To Speaker for analog loudspeakers, or one of the Dante outputs for Dante loudspeakers.
5. Adjust input and output levels using Designer and perform a sound check. Refer to the Help section for additional information.

Mobile Connection Cable Requirements

A 1/8-inch TRRS cable is required to connect a phone to the P300. Avoid using cables with a metal flange, as it may create an electrical connection to the exterior of the phone and interrupt the signal.
To ensure proper operation, only use:

- Apple-approved cables
- Cables with a plastic or non-conductive flange

Note: If necessary, a TRS (tip/ring/sleeve) cable may be used to plug a stereo device into the P300, but the device will only be able to send audio to the P300. The Enable auto-mute feature on the mobile input channel must be turned off in this case.

Controlling Devices with Shure Designer Software

To control this device's settings, use Shure Designer software. Designer enables integrators and system planners to design audio coverage for installations using MXA microphones and other Shure networked devices.
To access your device in Designer:

1. Download and install Designer on a computer connected to the same network as your device.
2. Open Designer, and check that you’re connected to the correct network in Settings.
3. Click Online devices. A list of online devices appears.
4. To identify devices, click the product icon to flash the lights on a device. Select your device in the list and click Configure to control device settings.

Learn more at shure.com/designer.

You can also access basic device settings using Shure Web Device Discovery. Full control is available in Designer.

How to Update Firmware Using Designer (Version 4.2 and Newer)

Before setting up devices, check for firmware updates using Designer to take advantage of new features and improvements.

You can also install firmware using Shure Update Utility for most products.

To update:

1. Open Designer. If there’s new firmware that you haven’t downloaded yet, Designer shows a banner with the number of updates available. Click to download firmware.
2. Go to Online devices and find your devices.
3. Choose a firmware version for each device from the Available firmware column. Make sure that no one is editing device settings during an update.
4. Select the checkbox next to each device you plan to update and click Update firmware. Devices may disappear from Online devices during an update. Don’t close Designer while updating firmware.

Firmware Versioning

When updating firmware, update all hardware to the same firmware version to ensure consistent operation.

The firmware of all devices has the form of MAJOR.MINOR.PATCH (e.g., 1.2.14). At a minimum, all devices on the network, must have the same MAJOR and MINOR firmware version numbers (e.g., 1.2.x).

P300 Hardware

Rear panel
Front panel

① Mobile Input

TRRS mobile input connects to a mobile device. Supports bidirectional audio with a TRRS cable, or sends audio into the P300 with a TRS cable.

Note: See the cable requirements for additional information.

Pin Assignments:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>Audio Input (Left)</td>
</tr>
<tr>
<td>Ring 1</td>
<td>Audio Input (Right)</td>
</tr>
<tr>
<td>Ring 2</td>
<td>Ground</td>
</tr>
<tr>
<td>Sleeve</td>
<td>Audio Output (To Phone)</td>
</tr>
</tbody>
</table>

Note: Left and Right audio signals are summed to a mono signal.

② Audio Inputs (Block Connector)

Balanced audio input connects to an analog audio device. Set the analog input level to match the output level of the analog device.

Input sensitivity:

- **Line** (+4 dBu)
- **Aux** (-10 dBV)

Block Pin Assignments:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Audio +</td>
</tr>
<tr>
<td>-</td>
<td>Audio -</td>
</tr>
<tr>
<td>⊥</td>
<td>Audio ground</td>
</tr>
</tbody>
</table>

③ Chassis Ground Screw
Provides an optional connection for microphone shield wire to chassis ground.

④ Audio Outputs (Block Connector)

Balanced audio output connects to an analog device. Set the output level to match the input sensitivity of the analog device (Line, Aux, or Mic level).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Audio +</td>
</tr>
<tr>
<td>-</td>
<td>Audio -</td>
</tr>
<tr>
<td>‡</td>
<td>Audio ground</td>
</tr>
</tbody>
</table>

⑤ USB Port

Connects to a computer to send and receive audio signals. Use the matrix mixer to sum any combination of signals from the P300 into a single mono channel and send through the USB output.

⑥ Dante Network Port

Connects to a network switch to connect Dante audio, Power over Ethernet (PoE), and data from the control software.

⑦ Reset Button

Resets the device settings back to the factory default.

⑧ LED Indicators

- **Power**
- **Network**
- **Network Audio**
- **Encryption**
- **USB**

Power: Power over Ethernet Plus (PoE+) present

Note: Use a PoE+ injector if your network switch does not supply PoE.

Network: Ethernet connection active

Network Audio: Dante audio present on the network

Encryption: Audio not encrypted

<table>
<thead>
<tr>
<th>LED Status</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No active signal</td>
</tr>
<tr>
<td>Green</td>
<td>Device is operating successfully</td>
</tr>
<tr>
<td>Red</td>
<td>Error has occurred. See event log for details.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Encryption:</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Audio not encrypted</td>
</tr>
</tbody>
</table>
LED Status

<table>
<thead>
<tr>
<th>LED Status</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Encryption enabled</td>
</tr>
<tr>
<td>Red</td>
<td>Encryption error. Possible causes:</td>
</tr>
<tr>
<td></td>
<td>Encryption is enabled on one device and not on another</td>
</tr>
<tr>
<td></td>
<td>Passphrase mismatch</td>
</tr>
</tbody>
</table>

USB Audio

<table>
<thead>
<tr>
<th>LED State</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No USB device connected</td>
</tr>
<tr>
<td>Green</td>
<td>USB device operating successfully</td>
</tr>
<tr>
<td>Red (flashing)</td>
<td>Problem detected with connected USB audio device</td>
</tr>
</tbody>
</table>

Note: Error details are available in the Event Log.

Level Indicators (Signal/Clip)

Tri-color LEDs indicate the audio signal level for the analog channels. Adjust output levels to avoid clipping.

Analog Input/Output

<table>
<thead>
<tr>
<th>LED State</th>
<th>Audio Signal Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>less than -60 dBFS</td>
</tr>
<tr>
<td>Green</td>
<td>-59 dBFS to -24 dBFS</td>
</tr>
<tr>
<td>Yellow</td>
<td>-23 dBFS to -1 dBFS</td>
</tr>
<tr>
<td>Red</td>
<td>0 dBFS or more</td>
</tr>
</tbody>
</table>

Note: The input and output LEDs stay off when metering is set to Post-gain and the channel is muted.

Power Over Ethernet Plus (PoE+)

This device requires PoE Plus to operate. It is compatible with both Class 4 PoE+ sources.

Power over Ethernet is delivered in one of the following ways:

- A network switch that provides PoE+
- A PoE+ injector device (must be a Gigabit device)

Cable Requirements

Always use Cat5E cable or higher.

Reset

The reset button is located inside a small hole in the rear panel. Use a paperclip or other small tool to press the button.

There are 2 hardware reset functions:

Network reset (press button for 4-8 seconds)
Resets all Shure control and audio network IP settings to factory defaults.

Full factory reset (press button for longer than 8 seconds)

Resets all network and Designer settings to the factory defaults.

Software Reset Options

Reboot Device (Settings > Factory Reset): Power-cycles the device as if it were unplugged from the network. All settings are retained when the device is rebooted.

Restore Factory Defaults (Settings > Factory Reset): Restores all network and Designer settings to the factory defaults. This is the same as performing a full factory reset using the reset button on the device.

Default Settings (Presets > Load Preset > Default Settings): Reverts audio settings back to the factory configuration (excluding Device Name, IP Settings, and Passwords).

If you’re using Shure Designer software to configure your system, please check the Designer help section for more about this topic.

Installation

Installation and Rack Mounting

Two mounting solutions are available for installing the P300:

CRT1 19” Rack Tray (optional accessory): Supports up to 2 devices (two P300s or one P300 and one ANI4IN, ANI4OUT, ANI22, or ANIUSB); mountable in a rack or under a table

Single-unit Mounting Tray (included accessory): Supports a single device for mounting under a table

Securing the Devices

Use the included screws from the mounting hardware kit to secure each P300 or Audio Network Interface (ANI). Devices can be mounted to face either direction. Insert the screws from the bottom in the appropriate holes, according to the following diagrams:
Align the holes as shown for securing a single device in the single-unit mounting tray.

Align the holes as shown for securing up to two devices in the 19" rack tray.
Rack Ear Configuration (CRT1)

The adjustable rack ears support mounting in a standard equipment rack or underneath a table.

Standard 19” Rack Mount

1. Align the ears with the mounting holes pointed forward.
2. Install the two screws that hold the ear to the tray as shown.

Under-table Mounting

1. Align the ears with the mounting holes pointed upward.
2. Install the two screws that hold the ear to the tray as shown.
Installing Underneath a Table

1. Hold the tray in the desired location under a table
2. Use a pencil to mark the location of the mounting holes on the table.
3. Drill 4 holes for the screws. The diameter of the holes in the tray are 7.1 mm.
4. Install the components into the tray
5. Install with 4 screws to secure the tray underneath the table

Schematic View

The schematic view in Designer provides an overview of the entire audio signal chain, with the ability to adjust settings and monitor signals.

Adjusting Settings

Right-click an input, output, or processing block to access the following options:

Per Channel

Copy / paste
Copy and paste settings between items. For example, set the equalizer curve on the USB output, and then use the same setting for the analog output. Or, copy the gain and mute status from one input channel to several others.

Mute / unmute
Mutes or activates the channel

Enable / disable
Turns processing on or off (does not apply to matrix mixer or automixer)

Edit
Opens the dialog to adjust parameters

Global (right-click in blank area)

Mute all inputs
Mutes all input channels
Mute all outputs
Mutes all output channels

Unmute all inputs
Unmutes all input channels

Unmute all outputs
Unmutes all output channels

Close all dialogs
Clears all open dialogs from the workspace

Customizing the Workspace
Create a custom environment to monitor and control a set of inputs, outputs, and processing blocks from a single screen. There are two ways to break out dialogs:

- Right click > edit
- Double-click the input, output, or processing block.

Open as many dialogs as you need to keep important controls available.

Metering and Audio Routing
A meter appears underneath each input and output to indicate signal levels (dBFS).

The lines connecting inputs and outputs to the matrix mixer appear colored when connections are established. When a signal is not routed, the line appears gray. Use these tools to troubleshoot audio signals and verify connections and levels.

Mute and Fader Groups

<table>
<thead>
<tr>
<th>Mute Groups</th>
<th>Check the Mute group box to add the channel to a group. Muting any channel within the Mute group mutes all channels in the group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fader Groups</td>
<td>Check the Fader group box to add the channel to a group. All faders within the group are linked, and move together when a single fader is adjusted.</td>
</tr>
</tbody>
</table>

Custom Presets
Use presets to quickly save and recall settings. Up to 10 presets can be stored on each device to match various signal processing requirements, room types, and microphones used. A preset saves all device settings except for the Device Name, IP Settings, and Passwords. Importing and exporting presets into new installations saves time and improves workflow. When a preset is selected, the name displays above the preset menu. If changes are made, an asterisk appears next to the name.

Note: Use the default settings preset to revert to the factory configuration (excludes Device Name, IP Settings, and Passwords).

Open the presets menu to reveal preset options:
save as preset: Saves settings to the device
load preset: Opens a configuration from the device
import from file: Downloads a preset file from a computer onto the device. Files may be selected through the browser or dragged into the import window.
export to file: Saves a preset file from the device onto a computer

Parametric Equalizer (PEQ)

Maximize audio quality by adjusting the frequency response with the parametric equalizer (PEQ). Use the input equalizers to make adjustments to specific channels, while using the output equalizers to adjust frequency response of all signals that are summed through a given output.

Common equalizer applications:

- Improve speech intelligibility
- Reduce noise from HVAC systems or video projectors
- Reduce room irregularities
- Adjust frequency response for reinforcement systems

Note: If you're connecting a microphone that has a built-in equalizer (such as an MXA310), disable any EQ on the mic and use the P300's EQ instead.

2-Band Equalizers

Adjust filter settings by manipulating the icons in the frequency response graph, or by entering numeric values. Disable a filter using the check-box next to the filter.

Filter Type

Each band has a selectable filter:

- **Low Cut:** Rolls off the audio signal below the selected frequency
- **Low Shelf:** Attenuates or boosts the audio signal below the selected frequency
- **High Cut:** Rolls off the audio signal above the selected frequency
- **High Shelf:** Attenuates or boosts the audio signal above the selected frequency

Frequency

Select the center frequency of the filter to cut/boost

Gain

Adjusts the level for a specific filter (+/- 30 dB)

4-Band Equalizers

Adjust filter settings by manipulating the icons in the frequency response graph, or by entering numeric values. Disable a filter using the check-box next to the filter.
Filter Type

- **Parametric**: Attenuates or boosts the signal within a customizable frequency range
- **Low Cut**: Rolls off the audio signal below the selected frequency
- **Low Shelf**: Attenuates or boosts the audio signal below the selected frequency
- **High Cut**: Rolls off the audio signal above the selected frequency
- **High Shelf**: Attenuates or boosts the audio signal above the selected frequency

Frequency

Select the center frequency of the filter to cut/boost.

Gain

Adjusts the level for a specific filter (+/- 30 dB).

Q

Adjusts the range of frequencies affected by the filter. As this value increases, the bandwidth becomes thinner.

Width

Adjusts the range of frequencies affected by the filter. The value is represented in octaves.

Note: The Q and width parameters affect the equalization curve in the same way. The only difference is the way the values are represented.
Equalizer Applications
Conferencing room acoustics vary based on room size, shape, and construction materials. Use the guidelines in following table.

<table>
<thead>
<tr>
<th>EQ Application</th>
<th>Suggested Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treble boost for improved speech intelligibility</td>
<td>Add a high shelf filter to boost frequencies greater than 1 kHz by 3-6 dB.</td>
</tr>
<tr>
<td>HVAC noise reduction</td>
<td>Add a low cut filter to attenuate frequencies below 200 Hz.</td>
</tr>
<tr>
<td>Reduce flutter echoes and sibilance</td>
<td>Identify the specific frequency range that "excites" the room:</td>
</tr>
<tr>
<td></td>
<td>1. Set a narrow Q value.</td>
</tr>
<tr>
<td></td>
<td>2. Increase the gain to between +10 and +15 dB, and then experiment with frequencies between 1 kHz and 6 kHz to pinpoint the range of flutter echoes or sibilance.</td>
</tr>
<tr>
<td>EQ Application</td>
<td>Suggested Settings</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Reduce hollow, resonant room sound</td>
<td>3. Reduce the gain at the identified frequency (start between -3 and -6 dB) to minimize the unwanted room sound. Identify the specific frequency range that "excites" the room: 1. Set a narrow Q value. 2. Increase the gain to between +10 and +15 dB, and then experiment with frequencies between 300 Hz and 900 Hz to pinpoint the resonant frequency. 3. Reduce the gain at the identified frequency (start between -3 and -6 dB) to minimize the unwanted room sound.</td>
</tr>
</tbody>
</table>

If you're using Shure Designer software to configure your system, please check the Designer help section for more about this topic.

Using Designer’s Optimize Workflow

Designer's Optimize workflow speeds up the process of connecting systems with at least 1 microphone and 1 audio processor. Optimize also creates mute control routes in locations with MXA network mute buttons. When you select Optimize in a location, Designer does the following:

- Creates audio routes and mute control routes
- Adjusts audio settings
- Turns on mute synchronization
- Enables LED logic control for applicable devices

The settings are optimized for your particular combination of devices. You can customize settings further, but the Optimize workflow gives you a good starting point.

After optimizing a location, you should check and adjust settings to fit your needs. These steps may include:

- Deleting unnecessary routes.
- Checking levels and adjusting gain.
- Verifying that AEC reference signals are correctly routed.
- Fine-tuning DSP blocks as needed.

Compatible devices:

- MXA910
- MXA710
- MXA310
- P300
- IntelliMix Room
- ANIUSB-MATRIX
- MXN5-C
- MXA Network Mute Button
To use the Optimize workflow:

1. Place all relevant devices in a location.
2. Select Optimize. Designer optimizes microphone and DSP settings for your equipment combination.

If you remove or add devices, select Optimize again.

Automatic Gain Control (AGC)

Automatic gain control adjusts channel levels to ensure consistent volume for all talkers, in all scenarios. For quieter voices, it increases gain; for louder voices, it attenuates the signal.

Automatic gain control is post-fader, and adjusts the channel level after the input level has been adjusted. Enable it on channels where the distance between the talker and the microphone may vary, or in rooms where many different people will use the conferencing system.

Target Level (dBFS)

- Represents the level that you want the gain to reach. This level is different from adjusting the input fader according to peak levels to avoid clipping. Suggested starting points:
 - P300: -32 dBFS
 - MXA910: -37 dBFS
 - IntelliMix Room: -32 dBFS

Maximum Boost (dB)

- Sets the maximum amount of gain that can be applied

Maximum Cut (dB)

- Sets the maximum attenuation that can be applied

Tip: Use the boost/cut meter to monitor the amount of gain added or subtracted from the signal. If this meter is always reaching the maximum boost or cut level, adjust the input fader so the signal is closer to the target level.

Acoustic Echo Cancellation

In audio conferencing, a far-end talker may hear their voice echo as a result of a near-end microphone capturing audio from loudspeakers. Acoustic Echo Cancellation is a DSP algorithm which identifies and eliminates echoes to deliver clear, uninterrupted speech. The P300 features 8 channels of acoustic echo cancellation, with independent processing on each channel for maximum effectiveness. Use the following tips when setting up a system:

- Optimize the acoustic environment, when possible: avoid pointing speakers directly at microphones, reduce speaker volume, and position speakers farther from microphones.
- If connecting to a Shure MXA910, disable the Echo Reduction on the microphone.

Training the Acoustic Echo Cancellation

Training is the process where the AEC optimizes processing based on the acoustic environment. It only trains when far-end audio is present and near-end talkers are quiet. The AEC is constantly adapting, so if the acoustic environment changes, the AEC automatically adjusts.

Adjusting Settings

To adjust acoustic echo cancellation settings, open the AEC menu in the schematic view or inputs tab.
Reference Meter
Use the reference meter to visually verify the reference signal is present.

ERLE
Echo reduction loss enhancement displays the dB level of signal reduction (the amount of echo being removed). If connected properly, the ERLE meter activity generally corresponds to the reference meter.

Reference
Select the channel that carries audio to the loudspeakers as the reference. Analog - To Speaker is the most commonly used channel, for configurations with an analog loudspeaker system or a display with a built-in speaker.

Note: Selecting a reference on any channel applies that same reference to all channels with AEC.

Non-linear Processing
The primary component of the acoustic echo canceller is an adaptive filter. Non-linear processing supplements the adaptive filter to remove any residual echo caused by acoustic irregularities or changes in the environment. Use the lowest possible setting that is effective in your room.

- **Low:** Use in rooms with controlled acoustics and minimal echoes. This setting provides the most natural sound.
- **Medium:** Use in typical rooms as a starting point. If echo artifacts appear, try using the high setting.
- **High:** Use to provide the strongest echo reduction in rooms with bad acoustics, or in situations where the echo path frequently changes.

Noise Reduction
Noise reduction significantly reduces the amount of noise in the signal caused by projectors, HVAC systems, or other environmental noise. It is a dynamic processor, which calculates the noise floor in the room and removes noise throughout the entire spectrum with maximum transparency.

Settings
The noise reduction setting (low, medium, or high) represents the amount of reduction in dB. Use the lowest possible setting that effectively lowers noise in the room.

Compressor
Use the compressor to control the dynamic range of the selected signal.

Threshold
When the audio signal exceeds the threshold value, the level is attenuated to prevent unwanted spikes in the output signal. The amount of attenuation is determined by the ratio value. Perform a soundcheck and set the threshold 3-6 dB above average talker levels, so the compressor only attenuates unexpected loud sounds.

Ratio
The ratio controls how much the signal is attenuated when it exceeds the threshold value. Higher ratios provide stronger attenuation. A lower ratio of 2:1 means that for every 2 dB the signal exceeds the threshold, the output signal will only exceed the threshold by 1 dB. A higher ratio of 10:1 means a loud sound that exceeds the threshold by 10 dB will only exceed the threshold by 1 dB, effectively reducing the signal by 9 dB.
Delay

Use the delay feature on the analog and USB outputs to synchronize audio and video. When a video system introduces latency (where you hear someone speak, and their mouth moves later), simply add delay to the analog outputs to align with the video. Delay can also be used in larger rooms to align the arrival time or phase between multiple speakers.

The delay is measured in milliseconds. If there is a significant difference between audio and video, start by using larger intervals of delay time (500-1000 ms). When it is closer to full synchronization, use smaller intervals to fine-tune.

The USB output channel features delay to ensure the near-end camera and near-end audio are synchronized.

Matrix Mixer

The matrix mixer routes audio signals between inputs and outputs for simple and flexible routing:

- Send a single input channel to multiple outputs
- Send multiple input channels to a single output

Crosspoint Gain

Crosspoint gain adjusts the gain between a specific input and output, to create separate submixes without changing input or output fader settings. Select the dB value at any crosspoint to open the gain adjustment panel.

Gain staging: Input fader > crosspoint gain > output fader

Routing Channels

Connect inputs and outputs by selecting the box where they intersect.

P300 Default Settings

The default configuration enables calling to multiple far ends with near-end Shure microphones. Connections are established for operating hardware codecs, software codecs, and mobile phones simultaneously.

<table>
<thead>
<tr>
<th>Input/Source Channel</th>
<th>Output/ Destination Channels</th>
</tr>
</thead>
</table>
| Automix (summed Dante input channels) | Analog - To Codec (Analog output 1)
USB output
Mobile output |
| Analog - From Codec (Analog input 1) | Analog - To Speaker (Analog output 2)
USB output
Mobile output |
| USB input | Analog - To Codec (Analog output 1)
Analog - To Speaker (Analog output 2)
Mobile output |
| Mobile input | Analog - To Codec (analog output 1)
Analog - To Speaker (analog output 2) |
Example Scenario: Connecting a Three-Way Call

Near-end audio from Dante microphones (Shure MXA 310) and the mobile phone are both routed to the video codec and sent to the far end. The mobile phone is simply carrying the audio from the remote caller -- its built-in microphone and speaker are disabled.

Far-end audio from the video codec is routed to a powered loudspeaker or amplifier (analog or Dante-enabled). It is also routed to the mobile phone (connected to the P300) to relay the signal to the remote caller.

The **remote caller (far end)** receives audio from both the near-end and far-end locations. The P300 connects all locations by routing both near and far-end audio sources through the mobile output. The audio from the remote caller is routed to the mobile input, and then sent to the loudspeakers in the near-end room and through the video codec to the far-end room.

<table>
<thead>
<tr>
<th>Input/Source Channel</th>
<th>Output/Destination Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input / Source Channel</th>
<th>Output / Destination Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automix (four summed Dante input channels from MXA310)</td>
<td>Analog - To Codec (analog output 1)</td>
</tr>
<tr>
<td></td>
<td>Mobile output</td>
</tr>
<tr>
<td>Analog - From Codec (analog input 1)</td>
<td>Analog - To Speaker (analog output 2)</td>
</tr>
<tr>
<td></td>
<td>Mobile output</td>
</tr>
<tr>
<td>Mobile input</td>
<td>Analog - To Codec (analog output 1)</td>
</tr>
</tbody>
</table>
Mute Synchronization

Mute synchronization ensures that all connected devices in a conferencing system mute or unmute at the same time and at the correct point in the signal path. Mute status is synchronized in the devices using logic signals or USB connections.

To use mute synchronization, enable logic on connected devices using the web application or Shure Designer software. Many Shure devices have logic enabled automatically.

If you use Designer's Optimize workflow, Designer configures all of the necessary mute synchronization settings for you.

Shure logic devices:

- P300 (Also mutes supported soft codecs connected by USB)
- ANIUSB-MATRIX (Also mutes supported soft codecs connected by USB)
- MXA910
- MXA710
- MXA310
- Network Mute Button
- ANI22-BLOCK
- ANI4IN-BLOCK
- Logic-enabled MX microphones connected to ANI22-BLOCK or ANI4IN-BLOCK
 - MX392
 - MX395-LED
 - MX396
 - MX405/410/415

Setting Up Mute Sync on the MXA310 and P300

Use this setup to mute the P300 by pressing the mute button on the MXA310. In the P300's signal chain, muting happens after the DSP so that the AEC stays converged.

1. Open the P300 in Designer and go to Inputs.
2. On any channel strip, select Logic enable. This enables logic on all channels.
3. Open the MXA310 in Designer and go to Settings > Logic control.
4. Set the Mute control function to Logic out.
5. Go to Lights. Set the style to Ring.

Adjusting Input levels

The Inputs tab controls a channel's gain before it reaches the matrix mixer. However, you should also adjust the source's gain before it reaches the P300.

To monitor a source's input level before it reaches the P300: Set metering to Pre-gain in the Settings menu.

To adjust channel gain in the P300's Inputs tab: Set metering to Post-gain in the Settings menu.
Digital Sources (Dante and USB)

1. Check the source level before it reaches the P300:
 ◦ Verify that the networked microphones or other Dante sources are operating at nominal output levels.
 ◦ Set USB volume on the computer to the maximum setting if the volume control is accessible.
 ◦ Adjust levels for Microflex Advance™ and Microflex Wireless microphones in their web applications.

2. Adjust the P300's input gain in Designer:
 ◦ Use the faders or manually enter a gain value. This gain stage adjusts the level of the signal before it reaches the matrix mixer.
 ◦ Mix the levels as high as possible without the loudest channel reaching the peak level (0 dB) on the meter.

Note: The Matrix mixer tab lets you adjust crosspoint gain, which controls the levels for the separate submixes being sent to the different outputs.

Analog Sources

1. Check the source level before it reaches the P300, and set any analog device with adjustable output levels to a nominal level.

2. In Designer, choose Line (+4dBu) or Aux (-10dBV) to match the incoming signal level for each analog input channel.

3. Use each channel's fader to adjust the gain before it goes to the matrix mixer.

Mobile Devices

The mobile device input gain is optimized for most devices when the fader is set at 0 dB. It provides adequate volume with sufficient headroom. As a general target, the audio signal received by the P300 from the phone should reach an average level of approximately -24 dBFS.

1. Set the phone to approximately 50% volume.
2. Set the input gain to 0 dB.
3. Make a test call to verify the following:
 ◦ Can you clearly hear the far-end talker?
 ◦ Can the far-end talker clearly hear audio from the near end?

If the signal being sent to the far end is too quiet, check and adjust the gain levels for the near-end microphones and the automixer.

Adjusting Output Levels

Tip: Set the output metering in the settings menu to ensure accurate metering.

Adjust faders in the Outputs section as high as necessary, but make sure to avoid clipping (when the signal reaches 0 dBFS). Always adjust the input gain and crosspoint gain in the matrix mixer before the output gain.

Analog output level: Select Line, Aux, or Mic level output signal to match the sensitivity of the receiving device.

Pre- and Post-Gain Metering

The 2 metering modes allow you to monitor signal levels before and after the gain stages.

Input Metering

- Pre-gain: Displays the pre-fader signal level. If signals are too low or clipping, adjust them at the source.
• **Post-gain**: Displays the post-fader signal level, so the meters reflect gain adjustments on input faders. This meter does not include automatic gain control or any other processing.

Output Metering

• **Pre-gain**: Displays signal levels after input gain has been applied, but before the output faders. This meter includes input faders, digital signal processing blocks, automixing, and crosspoint gain.
• **Post-gain**: Displays the post-fader signal level sent to each output. This meter includes gain adjustments made on the output faders.

Automix Modes

Gating

Gating mode delivers fast-acting, seamless channel gating and consistent perceived ambient sound levels. Off-attenuation in this mode is fixed at -20 dB per channel, regardless of the number of open channels.

Gain Sharing

Gain sharing mode dynamically balances system gain between open and closed channels. The system gain remains consistent by distributing gain across channels to equal one open channel. The scaled gain structure helps to reduce noise when there is a high channel count. When fewer channels are used, the lower off-attenuation provides transparent gating.

Manual

Manual mode sums all active tracks and sends the summed signal over a single Dante output. This provides the option to route an individual signal for reinforcement or recording, without enabling automixing. The settings from the faders in the standard monitoring view apply to the summed output.

Automix Settings

Note: Not all settings are available on all automixers.

Leave Last Mic On

Keeps the most recently used microphone channel active. The purpose of this feature is to keep natural room sound in the signal so that meeting participants on the far end know the audio signal has not been interrupted.

Gating Sensitivity

Changes the threshold of the level at which the gate is opened

Off Attenuation

Sets the level of signal reduction when a channel is not active

Hold Time

Sets the duration for which the channel remains open after the level drops below the gate threshold

Maximum Open Channels

Sets the maximum number of simultaneously active channels

Priority
When selected, this channel gate activates regardless of the number of maximum open channels.

Always On

When selected, this channel will always be active.

Send to Mix

When selected, sends the channel to the automix channel.

Solo

Mutes all of the other channels.

Automix Gain Meter

When enabled, changes gain meters to display automix gating in real time. Channels that gate open will display more gain than channels that are closed (attenuated) in the mix.

Mic Optimization Mode (P300 only)

Select the microphone that is used with the automixer for best performance. For best results, route microphone channels to the processing device and click Auto configure (this automatically selects the correct mic optimization mode).

Use the Off setting when using a Shure Microflex Wireless system, or traditional wired microphones.

Gate Inhibit (P300 only)

Enable gate inhibit to prevent far-end audio from gating on near-end microphone channels.

1. Make sure all input gain levels are properly adjusted and all other automixer settings are configured.
2. Disable Leave last mic on.
3. Perform a test call with the far end to adjust the gate inhibit fader. Increase the fader level so that the far end indicator turns on, and far-end audio does not gate on the near-end automixer channels.
4. Verify that near-end talkers still activate the automixer channels. If the channels do not turn on, lower the gate inhibit fader.
5. Re-enable Leave last mic on if necessary.

Automixer Direct Out Tap Points

In the Automixer tab, use the menus below each channel to choose where the signal to the matrix mixer should come from. All options include input channel gain, mute, solo, and PEQ.

Pre-Processing/Pre-Gate

Sends a signal without AEC, noise reduction, or AGC to the matrix mixer.

Post-Processing/Pre-Gate

Sends a signal with AEC and noise reduction but without automixer gating or AGC to the matrix mixer.

Post-Processing/Post-Gate

Sends a signal with automixer gating, AEC, and noise reduction but without AGC to the matrix mixer.

Pre-Processing/Post-Gate

Sends a signal with automixer gating but without AEC, noise reduction, or AGC to the matrix mixer.

Note: Direct out tap points are not available on all Shure automixers.
Encryption

Encryption operates at the location level in live mode only, meaning that all devices included in this location must have these settings. Audio is encrypted with the Advanced Encryption Standard (AES -256), as specified by the US Government National Institute of Standards and Technology (NIST) publication FIPS-197. Encryption is not supported with third-party devices.

To activate encryption:

1. In a location, click (Settings), located in the upper right.
2. Select Audio encryption.

The other options allow you to re-key the encryption or disable it if encryption had previously been enabled and you no longer want it.

Important: For encryption to work:

- Encryption must be universally enabled or disabled on all connected Shure devices in the same location.
- AES67 must be disabled in Dante Controller to turn encryption on or off. AES67 encryption is currently not supported.

Note: Encryption will not work between devices on 3.x and 4.x firmware. Update all devices to same the major firmware version to use encryption.

Networking and Dante

Networking Best Practices

When connecting Shure devices to a network, use the following best practices:

- Always use a “star” network topology by connecting each device directly to the switch or router.
- Connect all Shure networked devices to the same network and set to the same subnet.
- Allow all Shure software through the firewall on your computer.
- Use only 1 DHCP server per network. Disable DHCP addressing on additional servers.
- Power on the switch and DHCP server before powering on the Shure devices.
- To expand the network, use multiple switches in a star topology.
- All devices must be at the same firmware revision level.

Network Audio and Shure Control Data

MicroflexAdvance devices transport two types of data over the network: Shure Control and Network Audio.

Shure Control

The Shure Control carries data for the control software operation, firmware updates and 3rd party control systems (AMX, Crestron).

Network Audio

This network carries both the Dante digital audio and the control data for Dante Controller. The network audio requires a wired, gigabit Ethernet connection to operate.
Device IP Settings

Configure IP

Sets IP mode of the selected network interface:
- **Auto (DHCP):** For automatic assignment of IP addresses.
- **Manual (Static):** For Static IP addresses.

IP Settings

View and edit the IP Address, Subnet Mask, and Gateway for each network interface.

MAC Address

The network interface's unique identification.

Configuring IP Settings

IP configurations are managed in Shure Designer software. By default, they are set to Automatic (DHCP) mode. DHCP mode enables the devices to accept IP settings from a DHCP server, or automatically fall back to Link-Local settings when no DHCP is available. IP addresses may also be manually set.

To configure the IP properties, follow these steps:

1. Open device's configuration window.
2. Go to the Settings tab and select Network.
3. Select Auto or Manual. If Auto is used, addresses will be automatically assigned. For Manual setup, follow the instructions on manual configuration.

Manually Assigning Static IP Address

To manually assign IP addresses, follow these steps:

1. Open the device’s configuration window in Designer.
2. Go to the Settings tab and select Network.
3. Select Manual as the Configure IP setting.
4. Enter the IP settings.

Operating the Control Software over Wi-Fi

When operating the web application over Wi-Fi, it's important to set up the wireless router properly for best performance. The system employs several standard-based protocols that rely on multicast. Wi-Fi treats broadcast and multicast packets differently than general packets for backward compatibility reasons. In some cases, the Wi-Fi router will limit the multicast packet transmission rate to a value that is too slow for web application to properly operate.

Wi-Fi routers typically support 802.11b, 802.11a/g, and/or 802.11n standards. By default, many Wi-Fi routers are configured to allow older 802.11b devices to operate over the network. In this configuration, these routers will automatically limit the multicast data rates (or sometimes referred to as ‘basic rate’, or ‘management rate’) to 1-2Mbps.

Note: A Wi-Fi connection can only be used for the control software. Network audio cannot be transmitted over Wi-Fi.

Tip: For larger wireless microphone configurations, it's recommended to increase the multicast transmission rate to provide adequate bandwidth.

Important: For best performance, use a Wi-Fi router that does not limit the multicast rate to 1-2 Mbps.

Shure recommends the following Wi-Fi router brands:

- Cisco
Digital Audio Networking

Dante™ digital audio is carried over standard Ethernet and operates using standard Internet Protocols. Dante provides low latency, tight clock synchronization, and high Quality-of-Service (QoS) to provide reliable audio transport to a variety of Dante devices. Dante audio can coexist safely on the same network as IT and control data, or can be configured to use a dedicated network.

Switch Recommendations for Dante Networking

In addition to the basic networking requirements, Dante audio networks should use a Gigabit network switch or router with the following features:

- Gigabit ports
- Quality of Service (QoS) with 4 queues
- DiffServ (DSCP) QoS, with strict priority
- Recommended: A managed switch to provide detailed information about the operation of each network link (port speed, error counters, bandwidth used)

Setting Latency

Latency is the amount of time for a signal to travel across the system to the outputs of a device. To account for variances in latency time between devices and channels, Dante has a predetermined selection of latency settings. When the same setting is selected, it ensures that all Dante devices on the network are in sync.

These latency values should be used as a starting point. To determine the exact latency to use for your setup, deploy the setup, send Dante audio between your devices, and measure the actual latency in your system using Audinate’s Dante Controller software. Then round up to the nearest latency setting available, and use that one.

Use Audinate’s Dante Controller software to change latency settings.

Latency Recommendations

<table>
<thead>
<tr>
<th>Latency Setting</th>
<th>Maximum Number of Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 ms</td>
<td>3</td>
</tr>
<tr>
<td>0.5 ms (default)</td>
<td>5</td>
</tr>
<tr>
<td>1 ms</td>
<td>10</td>
</tr>
<tr>
<td>2 ms</td>
<td>10+</td>
</tr>
</tbody>
</table>

Pushing Device Names to the Dante Network

To send a device name to appear in Dante Controller, go to Settings>General and enter a Device Name. Select Push to Dante to send the name to appear on the network.

Note: names appear in Dante Controller with “-d” attached.

AES67

AES67 is a networked audio standard that enables communication between hardware components which use different IP audio technologies. This Shure device supports AES67 for increased compatibility within networked systems for live sound, integrated installations, and broadcast applications.
The following information is critical when transmitting or receiving AES67 signals:

- Update Dante Controller software to the newest available version to ensure the AES67 configuration tab appears.
- Before turning encryption on or off, you must disable AES67 in Dante Controller.
- AES67 cannot operate when the transmit and receive devices both support Dante.

<table>
<thead>
<tr>
<th>Shure Device Supports:</th>
<th>Device 2 Supports:</th>
<th>AES67 Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dante and AES67</td>
<td>Dante and AES67</td>
<td>No. Must use Dante.</td>
</tr>
<tr>
<td>Dante and AES67</td>
<td>AES67 without Dante. Any other audio networking protocol is acceptable.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Separate Dante and AES67 flows can operate simultaneously. The total number of flows is determined by the maximum flow limit of the device.

Sending Audio from a Shure Device

All AES67 configuration is managed in Dante Controller software. For more information, refer to the Dante Controller user guide.

1. Open the Shure transmitting device in Dante Controller.
2. Enable AES67.
3. Reboot the Shure device.
4. Create AES67 flows according to the instructions in the Dante Controller user guide.

Receiving Audio from a Device Using a Different Audio Network Protocol

Third-party devices: When the hardware supports SAP, flows are identified in the routing software that the device uses. Otherwise, to receive an AES67 flow, the AES67 session ID and IP address are required.

Shure devices: The transmitting device must support SAP. In Dante Controller, a transmit device (appears as an IP address) can be routed like any other Dante device.

Compatibility with Dante Domain Manager

This device is compatible with Dante Domain Manager software (DDM). DDM is network management software with user authentication, role-based security, and auditing features for Dante networks and Dante-enabled products.

Considerations for Shure devices controlled by DDM:

- When you add Shure devices to a Dante domain, set the local controller access to Read Write. Otherwise, you won't be able to access to Dante settings, perform a factory reset, or update device firmware.
- If the device and DDM can't communicate over the network for any reason, you won't be able to control Dante settings, perform a factory reset, or update device firmware. When the connection is reestablished, the device follows the policy set for it in the Dante domain.
- If Dante device lock is on, DDM is offline, or the configuration of the device is set to Prevent, some device settings are disabled. These include: Dante encryption, MXW association, AD4 Dante browse and Dante cue, and SCM820 linking.

See [Dante Domain Manager's documentation](#) for more information.

Note: Applies to firmware 4.1.x and newer.

Dante Flows for Shure Devices

Dante flows get created any time you route audio from one Dante device to another. One Dante flow can contain up to 4 audio channels. For example: sending all 5 available channels from an MXA310 to another device uses 2 Dante flows, because 1 flow can contain up to 4 channels.
Every Dante device has a specific number of transmit flows and receive flows. The number of flows is determined by Dante platform capabilities.

Unicast and multicast transmission settings also affect the number of Dante flows a device can send or receive. Using multicast transmission can help overcome unicast flow limitations.

Shure devices use different Dante platforms:

<table>
<thead>
<tr>
<th>Dante Platform</th>
<th>Shure Devices Using Platform</th>
<th>Unicast Transmit Flow Limit</th>
<th>Unicast Receive Flow Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooklyn II</td>
<td>ULX-D, SCM820, MXWAPT, MXWANI, P300, MXCWAPT</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Brooklyn II (without SRAM)</td>
<td>MXA910, MXA710, AD4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Ultimo/UltimoX</td>
<td>MXA310, ANI4IN, ANI4OUT, ANIUSB-MATRIX, ANI22, MN5-C</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DAL</td>
<td>IntelliMix Room</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Learn more about Dante flows in our FAQs or from Audinate.

Packet Bridge

Packet bridge enables an external controller to obtain IP information from the control interface of a Shure device. To access the packet bridge, an external controller must send a query packet over unicast UDP* to port 2203 on the Dante interface of the Shure device.

1. Send a UDP packet with a minimum 1-byte payload.

 *Note: The maximum accepted payload 140 bytes. Any content is allowed.

2. The Shure device will send a response packet over unicast UDP to the controller, using a destination UDP port identical to the source port of the query packet. The payload of the response packet follows this format:

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>IP address, as 32-bit unsigned integer in network order</td>
</tr>
<tr>
<td>4-7</td>
<td>Subnet mask, as 32-bit unsigned integer in network order</td>
</tr>
<tr>
<td>8-13</td>
<td>MAC address, as array of 6 bytes</td>
</tr>
</tbody>
</table>

 *Note: The Shure device should respond in less than one second on a typical network. If there is no response, try sending the query again after verifying the destination IP address and port number.

*UDP: User Datagram Protocol

QoS (Quality of Service) Settings

QoS settings assign priorities to specific data packets on the network, ensuring reliable audio delivery on larger networks with heavy traffic. This feature is available on most managed network switches. Although not required, assigning QoS settings is recommended.

*Note: Coordinate changes with the network administrator to avoid disrupting service.
To assign QoS values, open the switch interface and use the following table to assign Dante-associated queue values.

- Assign the highest possible value (shown as 4 in this example) for time-critical PTP events
- Use descending priority values for each remaining packet.

Dante QoS Priority Values

<table>
<thead>
<tr>
<th>Priority</th>
<th>Usage</th>
<th>DSCP Label</th>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (4)</td>
<td>Time-critical PTP</td>
<td>CS7</td>
<td>0x38</td>
<td>56</td>
<td>111000</td>
</tr>
<tr>
<td>Medium (3)</td>
<td>Audio, PTP</td>
<td>EF</td>
<td>0x2E</td>
<td>46</td>
<td>101110</td>
</tr>
<tr>
<td>Low (2)</td>
<td>(reserved)</td>
<td>CS1</td>
<td>0x08</td>
<td>8</td>
<td>001000</td>
</tr>
<tr>
<td>None (1)</td>
<td>Other traffic</td>
<td>BestEffort</td>
<td>0x00</td>
<td>0</td>
<td>000000</td>
</tr>
</tbody>
</table>

Note: Switch management may vary by manufacturer and switch type. Consult the manufacturer’s product guide for specific configuration details.

For more information on Dante requirements and networking, visit www.audinate.com.

Networking Terminology

PTP (Precision Time Protocol): Used to synchronize clocks on the network

DSCP (Differentiated Services Code Point): Standardized identification method for data used in layer 3 QoS prioritization

IP Ports and Protocols

Shure Control

<table>
<thead>
<tr>
<th>Port</th>
<th>TCP/UDP</th>
<th>Protocol</th>
<th>Description</th>
<th>Factory Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>tcp</td>
<td>FTP</td>
<td>Required for firmware updates (otherwise closed)</td>
<td>Closed</td>
</tr>
<tr>
<td>22</td>
<td>tcp</td>
<td>SSH</td>
<td>Secure Shell Interface</td>
<td>Closed</td>
</tr>
<tr>
<td>23</td>
<td>tcp</td>
<td>Telnet</td>
<td>Not supported</td>
<td>Closed</td>
</tr>
<tr>
<td>68</td>
<td>udp</td>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
<td>Open</td>
</tr>
<tr>
<td>80*</td>
<td>tcp</td>
<td>HTTP</td>
<td>Required to launch embedded web server</td>
<td>Open</td>
</tr>
<tr>
<td>443</td>
<td>tcp</td>
<td>HTTPS</td>
<td>Not supported</td>
<td>Closed</td>
</tr>
<tr>
<td>161</td>
<td>tcp</td>
<td>SNMP</td>
<td>Not supported</td>
<td>Closed</td>
</tr>
<tr>
<td>162</td>
<td>tcp</td>
<td>SNMP</td>
<td>Not supported</td>
<td>Closed</td>
</tr>
<tr>
<td>2202</td>
<td>tcp</td>
<td>ASCII</td>
<td>Required for 3rd party control strings</td>
<td>Open</td>
</tr>
<tr>
<td>5353</td>
<td>udp</td>
<td>mDNS†</td>
<td>Required for device discovery</td>
<td>Open</td>
</tr>
<tr>
<td>5568</td>
<td>udp</td>
<td>SDT†</td>
<td>Required for inter-device communication</td>
<td>Open</td>
</tr>
<tr>
<td>8023</td>
<td>tcp</td>
<td>Telnet</td>
<td>Debug console interface</td>
<td>Closed</td>
</tr>
<tr>
<td>Port</td>
<td>TCP/UDP</td>
<td>Protocol</td>
<td>Description</td>
<td>Factory Default</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>8180</td>
<td>tcp</td>
<td>HTML</td>
<td>Required for web application</td>
<td>Open</td>
</tr>
<tr>
<td>8427</td>
<td>udp</td>
<td>Multicast SLP(^\d)</td>
<td>Required for inter-device communication</td>
<td>Open</td>
</tr>
<tr>
<td>64000</td>
<td>tcp</td>
<td>Telnet</td>
<td>Required for Shure firmware update</td>
<td>Open</td>
</tr>
</tbody>
</table>

Dante Audio & Controller

<table>
<thead>
<tr>
<th>Port</th>
<th>TCP/UDP</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>udp</td>
<td>SNMP</td>
<td>Used by Dante</td>
</tr>
<tr>
<td>[319-320](^\d)</td>
<td>udp</td>
<td>PTP(^\d)</td>
<td>Dante clocking</td>
</tr>
<tr>
<td>2203</td>
<td>udp</td>
<td>Custom</td>
<td>Required for packet bridge</td>
</tr>
<tr>
<td>4321, 14336-14600</td>
<td>udp</td>
<td>Dante</td>
<td>Dante audio</td>
</tr>
<tr>
<td>[4440, 4444, 4455](^\d)</td>
<td>udp</td>
<td>Dante</td>
<td>Dante audio routing</td>
</tr>
<tr>
<td>5353</td>
<td>udp</td>
<td>mDNS(^\d)</td>
<td>Used by Dante</td>
</tr>
<tr>
<td>[8700-8706, 8800](^\d)</td>
<td>udp</td>
<td>Dante</td>
<td>Dante Control and Monitoring</td>
</tr>
<tr>
<td>8751</td>
<td>udp</td>
<td>Dante</td>
<td>Dante Controller</td>
</tr>
<tr>
<td>16000-65536</td>
<td>udp</td>
<td>Dante</td>
<td>Used by Dante</td>
</tr>
</tbody>
</table>

\(^\d\)These ports must be open on the PC or control system to access the device through a firewall.

\(^\d\)These protocols require multicast. Ensure multicast has been correctly configured for your network.

Using a Third-Party Control System

This device receives logic commands over the network. Many parameters controlled through Designer can be controlled using a third-party control system, using the appropriate command string.

Common applications:

- Mute
- LED color and behavior
- Loading presets
- Adjusting levels

A complete list of command strings is available at:

pubs.shure.com/command-strings/P300.
Troubleshooting

Event Log

The event log provides a detailed account of activity from the moment the device is powered on. The log collects up to 1,000 activity entries and time-stamps them relative to the last power cycle. The entries are stored in the internal memory, and are not cleared when the device is power-cycled. The Export feature creates a CSV (comma separated values) document to save and sort the log data.

Refer to the log file for details when troubleshooting or consulting with Shure Systems Support.

To view the event log:

1. Open the Help menu
2. Select View Event Log

Severity Level

Information

An action or event has been successfully completed

Warning

An action cannot be complete, but overall functionality is stable

Error

A problem has occurred that could inhibit functionality.

Log Details

Description

Provides details on events and errors, including IP address and subnet mask.

Time Stamp

Power cycles:days:hours:minutes:seconds since most recent boot-up.

Event ID

Indicates event type for internal reference.

Tip: Use the filter to narrow down results. Select a category heading to sort the log.

Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software lags in Google Chrome browser</td>
<td>Problem is browser-related. Turn off hardware acceleration option in Chrome.</td>
</tr>
<tr>
<td>Sound quality is muffled</td>
<td>Use equalizer to adjust frequency response. See the equalizer applications for the appropriate use.</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Audio sounds too high or too low in pitch</td>
<td>Make sure that the sample rate settings for Playback and Recording are the same in your computer’s sound settings. If these sample rates do not match, the audio may sound too high or too low in pitch.</td>
</tr>
</tbody>
</table>
| **Hardware does not show up in device discovery** | Ensure the devices are powered
Ensure PC and equipment are on the same network and set to the same subnet
Turn off other network interfaces not used to connect to the device (including WiFi)
Check that DHCP server is functioning (if applicable)
Reset the device |
| **No audio** | Verify the P300 is selected as the audio device in the audio devices or properties panel on the computer
Audio channels must be routed to an output through the matrix mixer
Connections between devices must be established in Dante Controller™ software
Check cables
Verify that input/output channels are not muted
Check that fader levels are not set too low
Make sure there is not an encryption error -- a passphrase mismatch or encryption only enabled on one device disrupts audio. |
| **Cannot route Dante audio channels** | Install latest version of Dante Controller from Audinate, available at www.audinate.com. |
| **Hardware does not power on** | The network switch must supply Power over Ethernet. Otherwise, a PoE injector must be used
Check network cables and connections |

Important Product Information

The equipment is intended to be used in professional audio applications.

Note: This device is not intended to be connected directly to a public internet network.

EMC conformance to Environment E2: Commercial and Light Industrial. Testing is based on the use of supplied and recommended cable types. The use of other than shielded (screened) cable types may degrade EMC performance.

Changes or modifications not expressly approved by Shure Incorporated could void your authority to operate this equipment.

Industry Canada ICES-003 Compliance Label: CAN ICES-3 (B)/NMB-3(B)

Authorized under the verification provision of FCC Part 15B.

Please follow your regional recycling scheme for batteries, packaging, and electronic waste.
Information to the user

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference.
2. This device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment to an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

The CE Declaration of Conformity can be obtained from: www.shure.com/europe/compliance

Authorized European representative:
Shure Europe GmbH
Headquarters Europe, Middle East & Africa
Department: EMEA Approval
Jakob-Dieffenbacher-Str. 12
75031 Eppingen, Germany
Phone: +49-7262-92 49 0
Fax: +49-7262-92 49 11 4
Email: info@shure.de

This product meets the Essential Requirements of all relevant European directives and is eligible for CE marking.

The CE Declaration of Conformity can be obtained from Shure Incorporated or any of its European representatives. For contact information please visit www.shure.com

Specifications

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>Mobile</td>
</tr>
</tbody>
</table>

USB Connections

(1) USB 2.0, Type B

- Single port carries 2 input and 2 output channels (Summed mono)

Network Connections (Dante Digital Audio)

(1) RJ45

- 10 Dante Inputs, 8 Dante Outputs
Polarity
Non-inverting, any input to any output

Power Requirements
802.3 at Type 2 (PoE Plus), Class 4

Power Consumption
17.5 W, maximum

Weight
1710 g (3.8 lbs)

Dimensions
H x W x D
4 x 21 x 22.6 cm (1.6 x 8.3 x 8.9 in.)

Control Software
Shure Designer

Operating Temperature Range
−6.7°C (20°F) to 50°C (122°F)

Storage Temperature Range
−29°C (-20°F) to 74°C (165°F)

Thermal Power Dissipation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>17.5 W (60 BTU/hr)</td>
</tr>
<tr>
<td>typical</td>
<td>14.6 W (50 BTU/hr)</td>
</tr>
</tbody>
</table>

Audio

Frequency Response
+1, -1.5 dB
20 to 20,000 Hz

Dante Digital Audio

<table>
<thead>
<tr>
<th>Sampling Rate</th>
<th>48 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Depth</td>
<td>24</td>
</tr>
</tbody>
</table>

USB Audio

<table>
<thead>
<tr>
<th>Sampling Rate</th>
<th>48 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Depth</td>
<td>16, 24</td>
</tr>
</tbody>
</table>

Latency
Does not include Dante latency

<table>
<thead>
<tr>
<th>Firmware 4.1 and newer</th>
<th>Dante 1-8 in to Dante out (AEC enabled)</th>
<th>15.4 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware 3.1 and older</td>
<td>Dante 1-8 in to Dante out (AEC disabled)</td>
<td>8.7 ms</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>Dante 9-10 in to Dante out</td>
<td>3.4 ms</td>
</tr>
<tr>
<td></td>
<td>Analog in to Analog out</td>
<td>3.8 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dante 1-8 in to Dante out (AEC enabled)</th>
<th>12.5 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dante 1-8 in to Dante out (AEC disabled)</td>
<td>5.8 ms</td>
</tr>
<tr>
<td>Dante 9-10 in to Dante out</td>
<td>1.8 ms</td>
</tr>
<tr>
<td>Analog in to Analog out</td>
<td>2.2 ms</td>
</tr>
</tbody>
</table>

Acoustic Echo Cancellation Tail Length
Up to 300 ms

Analog Connections (Block Connectors)

Dynamic Range
20 Hz to 20 kHz, A-weighted, typical

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog-to-Dante</td>
<td>113 dB</td>
</tr>
<tr>
<td>Dante-to-Analog</td>
<td>117 dB</td>
</tr>
</tbody>
</table>

Equivalent Input Noise
20 Hz to 20 kHz, A-weighted, input terminated with 150Ω

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>-86 dBV</td>
</tr>
<tr>
<td>Aux</td>
<td>-98 dBV</td>
</tr>
</tbody>
</table>

Total Harmonic Distortion
@ 1 kHz, 0 dBV input, 0 dB analog gain
<0.05%

Common Mode Rejection Ratio
150Ω balanced source @ 1 kHz
>50 dB

Input Impedance
9.6 kΩ

Input Clipping Level

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>+27 dBV</td>
</tr>
<tr>
<td>Aux</td>
<td>+15 dBV</td>
</tr>
</tbody>
</table>

Output Impedance
80 Ω

Output Clipping Level

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>+20 dBV</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Aux</td>
<td>+0 dBV</td>
</tr>
<tr>
<td>Mic</td>
<td>-26 dBV</td>
</tr>
</tbody>
</table>

Mobile Connection (3.5 mm Connector)

Pin Assignments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>Audio Input (Left)</td>
</tr>
<tr>
<td>Ring 1</td>
<td>Audio Input (Right)</td>
</tr>
<tr>
<td>Ring 2</td>
<td>Ground</td>
</tr>
<tr>
<td>Sleeve</td>
<td>Audio Output (To Phone)</td>
</tr>
</tbody>
</table>

Dynamic Range

20 Hz to 20 kHz, A-weighted, typical

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog-to-Dante</td>
<td>99 dB</td>
</tr>
<tr>
<td>Dante-to-Analog</td>
<td>90 dB</td>
</tr>
</tbody>
</table>

Equivalent Input Noise

20 Hz to 20 kHz, A-weighted, input terminated with 20Ω

-95 dBV

Total Harmonic Distortion

@ 1 kHz, 0 dBV Input, 0 dB analog gain

<0.05%

Input Impedance

3.7 kΩ

Input Clipping Level

+4 dBV

Output Impedance

1.4 kΩ

Output Clipping Level

Output terminated with 2.2 kΩ

-20 dBV

Networking

Cable Requirements

Cat 5e or higher (shielded cable recommended)

Mobile Pin Assignments (TRRS)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>Audio Input (Left)</td>
</tr>
<tr>
<td>Ring 1</td>
<td>Audio Input (Right)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Ring 2</td>
<td>Ground</td>
</tr>
<tr>
<td>Sleeve</td>
<td>Audio Output (To Phone)</td>
</tr>
</tbody>
</table>

Note: The audio input (tip and ring 1) are summed to a mono signal in the P300, to send the signal to any destination on a single channel.

Accessories

Furnished Accessories

<table>
<thead>
<tr>
<th>Kit, Hardware, P300-IMX</th>
<th>90D33522</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bracket, Half Rack Unit</td>
<td>53A27741</td>
</tr>
<tr>
<td>USB cable</td>
<td>95A39698</td>
</tr>
</tbody>
</table>

Optional Accessories and Replacement Parts

<table>
<thead>
<tr>
<th>19" rack tray</th>
<th>CRT1</th>
</tr>
</thead>
</table>